۴.۹
(۴۳۰)

روش واسپاس فازی

روش تصمیم گیری چند معیاره واسپاس (WASPAS)، در سال ۲۰۱۲ توسط زاوادسکاس و همکاران معرفی شد. این روش کاربردهای زیادی دارد که می توان به مواردی همچون انتخاب سایت برای توربین بادی، تصمیم گیری در مورد مکان یابی بازار خرید یا ارزیابی سایت ها برای اجرای پروژه های خورشیدی اشاره نمود.

شایستگی استفاده از رویکرد فازی اختصاص دادن اهمیت نسبی صفات با استفاده از اعداد فازی به جای تعداد مفهوم دقیق آن ها می باشد.

همچنین این روش برای ارزیابی راه حل های فن آوری یا طراحی جایگزین در ساخت، ساخت و ساز، مسائل تجاری یا حتی برای تجزیه و تحلیل عملکرد و رتبه بندی مجلات علمی نیز با موفقیت انجام شد.

روش WASPAS شامل دو قسمت جمع شده می باشد: ۱. مدل مجموع وزنی (WSM) ؛ ۲. مدل کالای وزنی (WPM).

مدل مجموع وزنی (WSM)

روش WSM ساده ، آسان برای استفاده و قابل درک است. این نمره کلی جایگزین را به عنوان یک جمع وزنی از مقادیر ویژگی تعیین می کند. این روش شناخته شده ترین و پرکاربردترین روش می باشد.

مدل کالای وزنی (WPM)

WPM به منظور جلوگیری از گزینه های با مقادیر صفت ضعیف ایجاد شده است. نمره هر یک از گزینه ها را به عنوان محصولی از درجه بندی هر یک از ویژگی ها با توجه به اهمیت ویژگی تعیین می کند.

بر اساس نظریه فازی خلاصه شده در بالا ، مراحل WASPAS-F را می توان به شرح بیان نمود:

مرحله اول – شکل گیری ماتریس تصمیم گیری فازی (FDMM)

مقادیر عملکرد Xij ویژگی های وزن Wj ورودی های DMM است. رتبه بندی های زبانی را انتخاب کنید. سیستم ویژگی ها و همچنین مقادیر و وزن اولیه ویژگی ها توسط خبرگان تعیین می شود.

مسئله بهینه سازی گسسته با ترجیحات m گزینه های معقول (ردیف) که بر روی n مشخصه (ستون) رتبه بندی شده اند نشان داده می شود:

ماتریس اولیه روش واسپاس فازی
ماتریس اولیه روش واسپاس فازی

که در آن Xij مقدار فازی نشان دهنده ارزش عملکرد گزینه از نظر ویژگی است. اگر نماد مجموعه ای فازی باشد ، یک ~ بالای نماد قرار می گیرد. سپس تعیین اولویت های گزینه ها در چند مرحله انجام می شود.

مرحله دوم – نرمال سازی

مقادیر اولیه تمام ویژگی های xij نرمال می شوند – تعریف مقادیر xij ماتریس تصمیم گیری نرمال X = [Xij] به طوری که:

ماتریس نرمال واسپاس فازی
ماتریس نرمال واسپاس فازی

مرحله سوم- ماتریس نرمال وزن دار

محاسبه وزن ماتریس تصمیم گیری فازی نرمال Xq برای WSM:

ماتریس نرمال وزن دار واسپاس فازی
ماتریس نرمال وزن دار واسپاس فازی

محاسبه وزن ماتریس تصمیم گیری فازی نرمال Xq برای WPM:

XPM در واسپاس فازی
XPM در واسپاس فازی

مرحله چهارم – محاسبه مقادیر بهینه Qi و Pi

الف) مطابق با WSM برای هر گزینه:

WSM واسپاس فازی
WSM واسپاس فازی

ب) مطابق با WPM برای هر گزینه:

WPM برای واسپاس فازی
WPM برای واسپاس فازی

نتیجه اندازه گیری عملکرد فازی برای هر جایگزین اعداد فازی Qi و Pi است. مرکز منطقه (Center of area) عملی ترین و ساده ترین مورد برای استفاده از فازی سازی است:

مقدار دیفازی روش واسپاس فازی
مقدار دیفازی روش واسپاس فازی

روش واسپاس فازی

روش FUZZY WASPAS

مرحله پنجم – مقدار عملکرد یکپارچه

مقدار عملکرد یکپارچه واسپاس فازی برای یک گزینه می تواند به شرح زیر تعیین شود:

مقدار کا واسپاس فازی
مقدار کا واسپاس فازی

لاندا بر اساس این فرض تعیین می شود که کل امتیازات WSM جایگزین باید برابر با کل نمرات WPM باشد (در برخی از مقالات مقدار لاندا را خبره تعیین می کند):

مقدار لاندا واسپاس فازی
مقدار لاندا واسپاس فازی

مرحله ششم – رتبه بندی

مرحله ۶. گزینه ترجیحی برتر یک گزینه اصلی با حداکثر مقدار Ki می باشد.

روش واسپاس فازی روش واسپاس فازی روش واسپاس فازی روش واسپاس فازی روش واسپاس فازی

مثال روش واسپاس فازی

مثال روش واسپاس فازی از مقاله A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development استخراج شده است.

کارشناسان وزن معیارها را تعیین کردند. جدول زیر نتایج یکپارچه وزن های تعیین شده را ارائه می دهد. بردار وزن اولویتی سطح معناداری معیارها را در ماتریس تصمیم گیری توصیف می کند. پس از به دست آوردن سطح معناداری معیارها، از روش WASPAS فازی برای ارزیابی اهمیت زیرساخت های اطلاعاتی استفاده شد.

ماتریس مقایسات زوجی واسپاس فازی
ماتریس مقایسات زوجی واسپاس فازی

در این مرحله، WASPAS فازی شروع به ایجاد ارزیابی های فازی از زیرساخت های اطلاعات جایگزین (A1 ، A2 و A3)، با در نظر گرفتن معیارها با استفاده از اعداد فازی مثلثی (TFN) می کند. این یک ماتریس تصمیم گیری اولیه (DMM) برای رتبه بندی گزینه ها است و رتبه بندی اجرای گزینه ها را مطابق با معیارها نشان می دهد. جدول زیر مقایسه گزینه ها را مطابق با معیارها ارائه می دهد.

ماتریس اعداد فازی مثال واسپاس فازی
ماتریس اعداد فازی مثال واسپاس فازی

ماتریس تصمیم گیری نرمال را بدست می آوریم:

ماتریس تصمیم گیری نرمال
ماتریس تصمیم گیری نرمال

جدول اول برای بایگانی تصمیم گیری چند معیاره فازی با وزن نرمال و در ادامه برای تعیین مقادیر عملکرد بهینه WSM و WPM:

مقادیر نرمال وزنی مثال واسپاس فازی
مقادیر نرمال وزنی مثال واسپاس فازی

مقدار عملکرد سودمند یکپارچه روش WASPAS فازی برای CII شد.

نتایج نهایی و رتبه بندی روش واسپاس فازی
نتایج نهایی و رتبه بندی روش واسپاس فازی
  • A1 مهمترین زیرساخت اطلاعاتی در روش WSM ، WPM و WASPAS است.
  • A3 کمترین گزینه حیاتی در بین تمام CII در نظر گرفته شده است.

چه میزان از این مطلب رضایت داشته اید؟

میانگین ۴.۹ / ۵. از ۴۳۰

لطف می کنین اگه رای بدین